Unsupervised Feature Learning With Symmetrically Connected Convolutional Denoising Auto-encoders

نویسندگان

  • Jianfeng Dong
  • Xiao-Jiao Mao
  • Chunhua Shen
  • Yu-Bin Yang
چکیده

Unsupervised pre-training was a critical technique for training deep neural networks years ago. With sufficient labeled data and modern training techniques, it is possible to train very deep neural networks from scratch in a purely supervised manner nowadays. However, unlabeled data is easier to obtain and usually of very large scale. How to make use of them better to help supervised learning is still a well-valued topic. In this paper, we investigate convolutional denoising auto-encoders to show that unsupervised pre-training can still improve the performance of high-level image related tasks such as image classification and semantic segmentation. The architecture we use is a convolutional auto-encoder network with symmetric shortcut connections. We empirically show that symmetric shortcut connections are very important for learning abstract representations via image reconstruction. When no extra unlabeled data are available, unsupervised pre-training with our network can regularize the supervised training and therefore lead to better generalization performance. With the help of unsupervised pre-training, our method achieves very competitive results in image classification using very simple allconvolution networks. When labeled data are limited but extra unlabeled data are available, our method achieves good results in several semi-supervised learning tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revisiting Denoising Auto-encoders

Denoising auto-encoders (DAE)s were proposed as a simple yet powerful way to obtain representations in an unsupervised manner by learning a map that approximates the clean inputs from their corrupted versions. However, the original objective function proposed for DAEs does not guarantee that denoising happens only at the encoding stages. We argue that a better representation can be obtained if ...

متن کامل

Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction

We present a novel convolutional auto-encoder (CAE) for unsupervised feature learning. A stack of CAEs forms a convolutional neural network (CNN). Each CAE is trained using conventional on-line gradient descent without additional regularization terms. A max-pooling layer is essential to learn biologically plausible features consistent with those found by previous approaches. Initializing a CNN ...

متن کامل

Towards Biologically Plausible Deep Learning

Neuroscientists have long criticised deep learning algorithms as incompatible with current knowledge of neurobiology. We explore more biologically plausible versions of deep representation learning, focusing here mostly on unsupervised learning but developing a learning mechanism that could account for supervised, unsupervised and reinforcement learning. The starting point is that the basic lea...

متن کامل

Convexified Convolutional Neural Networks

We describe the class of convexified convolutional neural networks (CCNNs), which capture the parameter sharing of convolutional neural networks in a convex manner. By representing the nonlinear convolutional filters as vectors in a reproducing kernel Hilbert space, the CNN parameters can be represented as a low-rank matrix, which can be relaxed to obtain a convex optimization problem. For lear...

متن کامل

Stacked What-Where Auto-encoders

We present a novel architecture, the “stacked what-where auto-encoders” (SWWAE), which integrates discriminative and generative pathways and provides a unified approach to supervised, semi-supervised and unsupervised learning without relying on sampling during training. An instantiation of SWWAE uses a convolutional net (Convnet) (LeCun et al. (1998)) to encode the input, and employs a deconvol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1611.09119  شماره 

صفحات  -

تاریخ انتشار 2016